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Antihydrogen production and accuracy of the equivalent photon approximation
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The production of antihydrogen in flight jprnucleus collisions is calculated theoretically in the plane wave
Born approximationwhich is equivalent to the straight line semiclassical approximatiantihydrogen has
been produced in this way at CERN LEAR and is presently studied at Fermilab at vEriamsrgies. Dirac
wave functions for the leptons are used, taking first order)(corrections into account. Analytical results are
obtained for differential cross sections. Total cross sections are obtained by numerical integration. The depen-
dence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation
and a recent variant by Munger, Brodsky, and Schmidt is discussed as a function of beam energy.
[S0556-282(98)05613-4
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. INTRODUCTION ments with fasH beams, such as Lamb shift measurements
[2,8]. On the other hand, we have to investigate the accuracy
Antihydrogen in flight was first produced and detected atand limitations of the EPA. It is the purpose of this paper to
the CERN Low Energy Antiproton Rin¢LEAR) [1] using  carry out an accurate calculation of the cross section for Eq.
the process (1.1). Analytical expressions are given.

p+Z—H+e +Z, (1.2 _
Il. PRODUCTION OF H WITH ANTIPROTON BEAMS
whereZ=54 (Xe). This process was first suggested by Mu- |n the semiclassical approach we assume that the relativ-
ngeret al.[2],where also calculations of the cross section foristic antiproton moves along a straight line. In its frame of

the antihydrogen production were performed in the equivareference the time-dependent electromagnetic fields of the
lent photon approximatiofEPA). A similar pair production target nucleus is given by

process witte capture will occur with a large cross section at
relativistic heavy ion collider§3]. This is important because

it leads to a beam loss. Theoretical calculations were done by _ _ vZee

A = h =—
many group$4—6]. They were mainly interested in the limit (nH=ve(r.t), where &(r,t) IR=R’(t)]
of high energies. The applicability of the EPA will become (2.2

more and more questionable for lower energies, wheréithe
production experiments were dor{d,7]. The dominant where r=(x,y,z), R=(X,y,y2), R'=(by,by,yvt), v
graph is shown in Fig. 1. It was shown in Ré%] that s the relative velocityy=(1—v?) Y2, andZ e is the tar-

bremsstrahlung pair production with capture can be safelget charge. We can write in the integral representation
neglected. In Eq(5) of Ref.[7] it was stated that the cross

section for antihydrogen production is of the order of (2.7 -
% 1073) Z2 nb, for low energies. Since in the present paper H(rt)= VZTeJ d3qe
the uncertainties due to the application of the equivalent pho- ' 22
ton method for low energies are now removed, this statement
can now be considered as superseded. Z

By crossing symmetry the process-p—e +H [2] is T
related to the photoeffegt+ H—p+e™ [4] which is treated
in the literature(see, e.g., Ref9]). These calculations pro-

vide approximate theoretical values for tiie production
cross section. This is also relevant for the ongoing experi-
ments at Fermilap8], where also the energy dependence of et
the process will be investigated and possible future experi- f\

v ow

[R=R'(1)]

7 (2.2

Y

*Email address: bertu@if. ufrj.br . .
TEmail address: G.Baur@fz-juelich.de FIG. 1. Diagram forH in collisions of p with a nuclear target.
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In first-order perturbation theory, t@production ampli- . j 3 Dt T iQur
tude for a collision with impact parametér=\bZ+b? is F(Q)=ie | d°r{ue”P'+W'}(y-K)e
given in terms of the transition density and currgfit) and

j(r), respectively, by w14 ;_myo;'€ W (1)
1 . ,
alstzi_f dtelwtf dar[p(r)(ﬁ(r,t)—J(r)~A(r,t)] Zlej d3r{aei(Qp).r(,;_K)
dteet| d® d3 —_— 02 %
T 22 q o 1+ 5y y-V) oW ondT)
X[p(r)=v-j(r)], 2.3 = o, >
+V e~ (y-K)oWon(r) [, (2.9

wherew=¢+m is the sum of the electros and the positron

energym (the binding energy oH can be neglectedin the  \yhere in the last equation we neglected terms of highest
last step we used Eq&.1) and(2.2). The integral over time  5rqer inZa.

yields the factor (2r/yv) 5(q,— w/ yv). Furthermore, using Integrating by parts,
the continuity equationy -j=—iwp, we get
_Zre( oo @YY (s igu[ 1D ) LGl F(Q)=ief d3r|ue‘<°‘P>'f(y-K)
A1st - Qt o |

(2.9

1 - =
1+ ﬁ'yOY'V)U"I]nonr(r)}
where the index(t) denotes the components aloftgans-
verse t9 the beam direction, an@=(q;,w/v). Note that +\I_,,eiQ.r(;,K)v\I, ,(f)]
Q?— w?=0g?+ (w/yv)?. The transition current is given in non
terms of the Dirac matrices, and the lepton wave functions

- (7% oA (+) . e g2( 3 1 -

j(r)=¢e[P' 7 * aW'™/. Thus we can rewrite thel produc- =—a, d3{u(y-K)|| 1+ om? v-(Q—p)

tion as Vm m

Z:e eltP Xv(e7"1%0)q_p |+ Wi(y-K)v . (2.9
ajg=— | d? ——F(Q), 2.
1T Gt 2+(w/yv) (Q) (2.5
Since the corrections are in first order Zr, we have
where replaced¥ ,.(r) by its constant value {/ra3? in the last
term of Eq.(2.9). If we would do the same in the first term it
Qi- ay would be identically zergexcept forQ=p). This is the rea-
3 =) * |Q r (+)
F(Q)= f dr[w(n]*e (vyz ® )\P (r) son why we need to keep the corrections in the wave func-

tions to first order inZ«; for e>m these corrections yield a
term of the same order as the plane-wave to the total cross
=ieK. | d3r[w)(r)]*e Q0w () . i
leK f dr[Wi(r)]* e YW, (2.8 gection, as we shall see later. We rewrite Exj9) as

In the last equality we used the definitidd=(K,,K,) UAD

- 4 ~5/2
=(g,/w,1lvy?) and (°,y) are the Dirac matrices, where F(Q)=4ieyma, (Q-p)2’ (2.10
we follow the procedure of Ref9]. The total cross section is
obtained by integrating the square of the expressib)

over all possible impact parameters: where
IF(Q)I2 A=a(y-K)+(7-K)y°(3-b)+(7-d)1°(7-K),
& f|a1342d2b 4( ) fdz o2 (2.19
spins spins )2
(2.7 with

The same result can be obtained in the plane-wave Born

approximation, as shown in Appendix C. a= ! ¢ . b= Q—p ,
Using the positron and the electron wave functions as (Q-p? Q*—p? 2m(Q—p)?

given by Eqs(A4) of Appendix A and Eq(B1) of the Ap-

pendix B, we get and
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Qb doyeir o 64’ (wlv—p,)| { .
c= Py (2.12 O *‘*’)—agqtyzv (Q—p)° la(p-et)
Inserting Eq.(2.10 into Eq.(2.7), the cross section becomes +p (qt_p'ét)} (e— )( —p-&)
“(wlv=py) (Q2-p?) )’
_ 1ee? Ze Zf d®p (> d?q 1 (2.18
g v | ) @mrlo (@ w?? (@ p)

In these equations=gq,/q; is a unit vector in the trans-

X >, [uAv|? (213 verse direction. The cross sections,,t, o , and
spins —

o, 7 are interpreted as the cross sectionsHoby virtual
transverse and longitudinal photons and a interference term,

The sum funs over the spins of the positron and the eleGgho tively. Note that the transverse and longitudinal direc-
tron. Usingp“dp=epde, and standard trace techniques weyjqng arewith respect to the beam axisot with respect to

get the photon momentum, as is usually meant by this term.
Only for y>1 does this definition agrees with the definition
do 32e%p(zZre\? (> d’q of transverse and longitudinal virtual photons. However, this
JedQ : 5 Jo (0P w?? (O- {(8_ )I(b separation is very useful, as we will see next.
—d)2K2+4(K-b)(K-d)]+(s+1)a K?2 _
Ill. PRODUCTION OF H BY REAL PHOTONS
+2a[2(p-K)(b-K)—p-(b—d)K2]}. (2.14

The cross section for production of by real photons is

Using the definition oK, it is illustrative to separate the given by[9]
integrand of the above equation in terms of longitudinal and
transverse components: 3

d*p
d(T,y:27T|Vfi|26(w_8_1)(2—)3, 3.
aa
do 1 (ZTe)ZJWd(qZ\ d; [do, T (0.0)
dedQ 7ol v 02— w22 dO
¢ TeLe 0 (Q ) [ where
dO’ ¥*
2LQu)+ — o (Q, >} (2.1
4 N
vf.=‘e\/jf e (@ T ),
where (3.2
do_ *T 4[(8—1){(b—d)2 with k=Zzw/c, wherez is the unit vector along the photon
incident direction, ane is photon polarization unit vector.
Al A Using the positron and the electron wave functions as
_ (G —P-&)p-& +(s+1)a2 given by Egs(A4) of Appendix A and Eq(B1) of Appendix
(Q—p)4(Q?—p?) B, and performing similar steps as in Sec. Il, we get
(G—P-&)p-&
2a t—z—p-(b—d) , 877\/— uBuv
(Q=p) Vi=-—e Tl (xp)E’ 3.3
(2.1
9t Q- 2 L ) S PP
W)= v & -
dey asa? \v?v/ (Q-p)'| B
(o 2 B=a,(y-«)+(y-k)y (y-bo)+(y-d)y(y-«), 54
wlv =P, 2 A4
) (Q—p)Z(QZ—IOZ)] rlerha
wherea,, b,, andd, are the quantities defined in Egs.
+2 M—p(b—d) , (217p  (2.12, but with Q replaced IbyEziw/c.llnserting these re-
(Q—p)? sults in Eq.(3.1) and summing over spins we get
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It is instructive to derive this cross section by a different
method. In some textbooksee, e.g., Ref410,9]) one can
find a calculation of the cross sections for the annihilation of
a positron with an electron in the shell of a nucleus. From
charge conjugation invarian€erhich is valid for QED, this
cross section is the same as the cross section for the annihi-
lation of an electron with a positron in thé shell of anH.
The cross section ig10,11]

1000

100

dcy/ dcos© [pb]

— 2me? 1

_ 2 4
ole+H—-y+p)=

2, _
8+38+3

5 2
Ch

Pw

e+2

—Tln(erp) . (3.8

FIG. 2. Angular distribution of the electrons kh production by Using the detailed balance theorem, the above equation

real photons for several electron energies. yields exactly the same cross sectiortbproduction by real
photons as given by Eq3.7). The reason is that the calcu-
lation leading to Eq(3.7), originally due to Sautdrl2], used
(b.—d,)? the same corrections @« order for the electron and posi-
tron wave functions, as we did to obtain E§.1) (see Ap-
pendixes A and B

40T g8 (k—p)?

(p-e)?

d 32¢? 1
T ()= b [(8—1)

(p-€)?

- |4+(s+1)a3+2a The relevance of these corrections can be better under-
(k—p)?(k>—p?) “ “l(k—p)2  stood by using the high-energy limi¢>1. From Eq.(3.7)
we get
—p-(b—d) ] (3.9 — _ 4me?1
o(y+tp—e +H)=—-. (3.9
a, &€

0
We notice that the above equation can also be obtained )

from Egs.(2.15—(2.18 in the limit g,—0 andv—c. In this If in our calculation, we had used plane waves for the elec-

limit o, —0, o 1—0, ando.«; becomes the cross tron and the hydrogenic wave function for the positron, with-

sectionyfor the, proéuctiohfby realyphotons out the corrections to ordef«, the cross section for the

Integrating Eq.(3.5 over the azimuthal angle we get Production ofH by real photons would be given by
(without any further approximations

do, e’p sin 6
W(w) =47 — 2 7 (3.10
do, e?pi(e+2)  sirfo pwa 8w (s~ p COSO)
W(w)=27r 5 4 4 . L
apw (e—p cosd) the integral of which is
X|e—p cosh— ———]|. 3.6 gme’ p
P w(e+2) (3.6 [0, lpwa=——— — (3e2+p?). (3.12)
dy
In Fig. 2 we plot the cross section for the angular distri-|, the high-energy limit
bution of the electrons il production by real photons. We
observe that the higher the electron energy is, the more for- 32762 1
ward peaked the distribution becomes. As we can immedi- [oylpwa=——5 3 (3.12
ately deduce from E(23.6), for e>1, the width of the peak 33,
is gi A ~1. F =1 the distribution i - . .
Lisoﬁgﬁg giyr?ecose ore the distribution is propor We see that the difference between this result and that of
L Eqg. (3.9 is a factor 8/3. This is just the reason why the
Integrating Eq.(3.6) over § we get corrections of ordeZa have to be included in the calcula-
) tion of H. They yield terms to the matrix elements for pho-
U(7+E_>e—+ﬁ): 4me P 24 E8+ f toproduction ofH of the same order as the terms of lowest
ag o 33 order. The origin of the difference between the two results
are the small distances which enter in the calculation of the
_ e+2 In(e +p) 3.7 matrix elements of Eq2.9). The corrections are essential to
' ' account for their effects properly. We note that these correc-
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FIG. 3. Production cross sections by longitudinal and transverse FIG. 5. H production in a collision of an antiproton with a
virtual photonso 1, o+, respectively. The cross sections are proton target, as a function of. The solid curve shows the cross
calculated fore=2 andy=3. section as given by E@4.1) and the dashed line is the cross section

with only the inclusion ofr « 1. The dashed line is the result of the
. S approximation given by Eq5.3).
tions are enough to account for a good descriptionHof PP ¢ y Ed5.9

production. The connection between the productioﬁdjy dominates. For | 's th i . |

real photons and by virtual ones will prove to be very useful,” »* T ominates. For largg's the Cross sectiomr,« 1S only

as we shall see in the next section. relevant aty;=0. But this region contributes little to the total
cross section, which is given by

IV. PRODUCTION OF H BY VIRTUAL PHOTONS

_ 1 (Zge\? (= (- a
As we saw in last section, the productiontdfin a colli- o= %( T) f dSJ d(d))—5——5lox1(Qw)
. — L 1 0 (Q°— w?)
sion of p with nuclear targets is directly related to the pro-
duction cross section by real photons in the lioyit~0 and +0,x(Q o)t 0, (Quw)], 4.0

v—c. It is important to determine at which valuesafand
v this condition applies. In Figs. 3 and 4 we plot the produc- i . i
tion cross sections by longitudinal and transverse virtuaPince the first term inside the integral suppresges0 val-
photonse 1, o« , respectively. These are the integrals of ues. Thls_can also be seen by calculating the total cross sec-
Egs. (2.16 and (2.17, which are performed numerically. tion for H production as a function of. This is shown in
The integral of the interference term« 1, Eq. (2.18), is Fig. 5 where the solid curve shows the cross section as given
very small and is not shown. In Fig. 3 the cross sections ar8Y Eq. (4.1), and the dashed line is the cross section with
calculated fors=2 andy=3, and in Fig. 4 fory=10 and  only the inclusion ofr, 1. We see thqt fow of the order of
e=2. We observe that for low’s the cross sectionr  is 8, or larger, the cross section is dominated by the transverse
as important asr«1, while for large y's the cross section virtual photon component. Moreover we also observe that
the cross section for large’s disagree with the equivalent
1000 : : : : i photon approximatiofEPA) used in Ref[2] to calculate the

] cross section for the production Hf. It is thus convenient to
v=10 ] study under what circumstances the equivalent photon ap-
e=2 1 proximation is reliable.

100 4 It might appear strange that the longitudinal part of the
\ ] cross section is relevant until such large valuesyoft is
\ ] thus reasonable to check this result with a more schematic
] calculation. This can be achieved by using plane waves for
10k “ i the electron and hydrogenic waves for the positron, without
) ] the correction terms to ordéta. In this case, we get

O @, @ [PD]
Q
3

u(y-K)w
(Q-p)?’

F(Q)=4iema,>?
0 1 2 3 4 5 Q Vmag
d¢

4.2

FIG. 4. Same as in Fig. 3, but far=10 ande=2. which yields the cross section
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FIG. 6. H production in a collision of an antiproton with a ~ FIG. 7. Virtual photon cross sectiom,«1(Q,w) for e=1,5,
proton target calculated using a plane wave function for the electrognd 10, fory=100, and as a function af; .

and a hydrogenic wave function fod. The ratio Oor/de

—do /de)/dor/de is shown as a function of and fore=1, 2, V. THE EQUIVALENT PHOTON APPROXIMATION

and 3, respectively. Equatioit.3—(4.5 were used in the calcula- The equivalent photon approximation is a well known

tion. method to obtain cross sections for virtual photon processes
in QED. It is described in several textboolsee, e.g., Ref.

do 1 (Ze\? (= 5 q; [9]). It is valid for largey’s, in which case the cross section
P OB J'O (Qt)(Qz_—wz)2 is dominated bxtransverse photons, as with the production
cross section ofl. In Fig. 7 we plot the virtual photon cross
do,«1 do sectiono .« 1(Q,w) for e=1,5, and 10, fory=100, and as a

4 oL
X|gqa Qo)+ —q (Q@)|, 43 function ofg,. In this logarithmic plot it is evident that the

function o« +(Q, w) is approximately constant until a cutoff
where the interference term is exactly zero, and value g{"® at which it drops rapidly to zero. On the other
hand, the function

dam(Q ) 32%p 1 ,
,W)= EE—— 2
do a5 (Q-p° _YEe % sy
U [gp+ (el )]
and
which we call by “equivalent photon number,” is strongly
do e, 32€2pw2( 1 )2 1 peaked atj;= w/yv, which is very small fory>1. Thus it is
Qo)=—F5| 5 . (44  fair to write
df axa; |\ vv) (Q-p)°
do max 1
The integral ovef) in the expressions above can be done P fq‘ d(qtz);n(%Q)Uy*T(QFO,w)
analytically yielding 0
1 max
[ay*T(Q,w)] _ 128we’p (p>+3Q%)(3p*+Q?) = Zay(w)foqt d(a?)n(y,Q), (5.2
o (Qw)|  3a (Q*-p?)°

where in the last equality we have approximaiegk(q;
x‘l } 45 =0,0)=0,(w). This approximation is indeed valid foy
0?(qy%)?]” ' >1, as we can see from Fig. 8, where we plot the ratio
between these two quantities fer=1, 5, and 10, and as a
Using this result, the integral ovqf in Eq.(4.3) can also be function of y. For y bigger than 10 the approximation is
performed analytically but resulting in too long expressionsquite good, and it is even better for the lower values of
to be transcribed here. In Fig. 6 we plot 1 Equation(5.2) is known as the “equivalent photon approxi-
—(doy /de)/(do/de) obtained in this approximation, fos mation.” The problem with the approximation is that the
=1, 2, and 3, respectively, and as a functiomofWe ob- integral in Eq.(5.2) diverges logarithmically. The approxi-
serve indeed that even for relatively large valuesyde.g., mation is only valid if we include a cutoff parametgl®*,
y~5) the longitudinal part of the cross section is still sub-determined by the value af; at whicho «+(Q, ) drops to
stantially relevant for the calculation of the total cross seczero. A hint to obtain this parameter is to look at Fig. 7. We
tion. see that the transverse virtual photon cross section drops to
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0,m/c (™

0.5

0.1
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FIG. 8. Ratio betweew ,«1(q;=0,0) ando,(w) for e=1,5,
and 10, and as a function of

zero atg;=¢. Another hint comes from Fig. 9, where we
plot the energy spectrum of the electralv/de for vy

PHYSICAL REVIEW [38 034005

The dotted curve shown in Fig. 5 is the integral of Eq.
(5.3 over w. We see that this approximation is very reason-
able, for largey. It is only for the very extremely large’s
that we obtaino= (2.86 pb)Z2 In v, where the number in-
side parenthesis comes from (2r)[5dw o (0)/®
=2.86 pb. Only aty~ 10° and larger does the approximation
presented in Ref.2] become closéin the range of 10%to
the result obtained with the equation above.

Referencd 1] contains the only published data on antihy-
drogen production. Unfortunately, this is not a high statistics
experiment. In this paper, 11(1) events were found with
an estimated integrated luminosity of x8.0% cm 2
(£50%). One can translate this into a cross section of 6
+ 2+ 3 nb, with the estimates for statistical and systematical
errors, respectively. Our theoretical cross section gis
=(54)?x0.25 pb~0.7 nb, leading only to an agreement
with the experiment for the very lower limit experimental
value.

VI. CONCLUSIONS

=3, 10, and 10, respectively, obtained from a numerical in- ] )
tegration of Eq.(4.1). We observe that the energy spectrum We have calculated the cross sections for the production

peaks ate=2-—3, irrespective of the value of. We thus

of antihydrogen in collisions of antiprotons with heavy

conclude that an appropriate value of the cutoff parameter iguclear targetS The cross section is well described either by a

max__

g; =2. Inserting this value in Eq5.2) we get

do 1(Z.e\%1
$=; T 50’7((1)) In(4x+1)

2

-4 ,  Wwhere x=7 (5.3

w2

X
4x+1

In a later paper{14] the cutoff @"®)2=4—y?, with y

semiclassical method or by the plane-wave Born approxima-
tion. In fact, both approaches yield the same result for rela-
tivistic antiprotons. The cross section can be separated into
longitudinal and transverse components, corresponding to
the velocity of the incident particle. For high energies,
>1, this corresponds to the usual meaning longitudinal and
transverse components of the photon. A very transparent and
simple formulation is obtained using the lowest order correc-
tions to the positron and electron wave functions. At ul-
trarelativistic antiproton energies, the contribution of the lon-
gitudinal virtual photons to the total cross section vanishes.

= wl’yo was used, which can be considered as an improverhe remaining terms of the cross section can be factorized in

ment over the one used here for low valuesyofn this case

the bracketing in Eq(5.3 is changed into In(4#)—(1
2

—y*l4).

1.00

o

[=%

— 010k,

[ LAY

=

0

-cﬂ)

8 0.01

0.00 :
0 10 20 30 40
e/m

€

FIG. 9. Energy spectrum of the electroor/de for y=3, 10,

terms of a virtual photon spectra and the cross section in-
duced by real photons. However, the factorization depends
on a cutoff parameter, which is not well defined. This leads
to differences up to a factor of 2 between our results and
those based on the equivalent photon approximation. Produc-
tion of antiatoms with the electron at low energies, typically
e=2, is favored. The angular distribution of the electrons is
forward peaked within a angular intervalf=1/e.

The equivalent photon approximation is only of help as a
qualitative guidance for low values of(y smaller than
about 10. This is the case for the CERN/LEAR experiment
(p=1.94 GeVk), to a lesser extent for the Fermilab experi-
ment[8] where the beam momentum can vary from 3.45 to
8.8 GeVk. The formulation presented here allows for a bet-
ter quantitative calculation of the production of antiatoms at
these energies. The discrepancy to earlier calculafib8k
for small values ofy is at present not understood.
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APPENDIX A: POSITRON WAVE FUNCTION

Here we deduce a first ordeZ &) correction of the pos-
itron wave function, important in the calculation of the
production cross section. To be general, we consider the pro-
duction of a bound positron in a relativistic antinucleus, with

charge—Z, incident on a target nucleus with charde.

Much of our calculation is based on arguments presented in

Ref.[9] with connection to the photoelectric effect.

PHYSICAL REVIEW D 58 034005

V2 z&\ o da [.z€&
P o R A
(A7)

The nonrelativistic wave function obeys the equation
(V212m—|eg+Z€/r) ¥ hon=0, from which we deduce that

vz ze?\ _z¢
( __)V\Pnonr:_(VT>\Pnonr- (A8)

Thus, if WM =i/(2m)va-V¥ .. it will be the solution

The Dirac equation for a positron in the field of the anti- ]?f Eq. (A7). An approximate solution of EqAL) is there-
ore

nucleus is
eV=[a-(p+eA)—Bm—ed]V. (A1)
ForA=0,

[e—U+Bm+ia-V]¥=0, (A2)

-

142 % 1+ | 0y.V
om Yy

v = VW on= om

vWnonr-
(A9)

The relevant distances for the nonrelativistic wave func-
tion arer~1/(mZ¢&). The correction term should be good

whereU=—e¢=—Z€?/r is the Coulomb field. The posi- Within these distances. But, for the ground stede any s

tron will be most likely be produced at the state of the

state it can be used for any value of since the derivative of

antinucleus. To lowest order the wave function is given bythe exponential functiofA3) is always proportional t@e”.

the nonrelativistic hydrogenic wave function

312
efr/ao

qp

Whond 1) = \/_; (A3)

whereag=1/(Ze’m).
To first order, a corrected wave functi¢io orderZe?) is
given by
V=W ot ¥, (A4)

wherev denotes the positron spinor.
Applying the operatoe —U—mgB+ia-V to Eq.(A2) we
obtain

(V24 p2=2eU)¥P=(ia-VU—-U) V. (A5)
Substituting Eq(A4) into Eq. (A5) and expanding,
(V2+p?—2eU) VW opp + (V24 p2—2eU) TV
=(ia-VU-U)¥ ,w+(ia-VU-UHPD,
(A6)

Since p?=g?+m?=-2m|e, ¥YWxze?, and U

xZ€?, we get, to lowest order,
(V24 p?=2eU) W on=(V2—2m|eg| — 2|65 U)W 1on=0
and Eq.(A6) becomes
(V2=2mled —2mU)¥ DV =(ia-VU)¥ o0

or

Because of that, we can use the corrected wave function in

our calculation ofH production where, as we see in Sec. Il,
the small values of are essential in the computation of the
matrix elements.

APPENDIX B: ELECTRON WAVE FUNCTION

For the electron wave function we use a plane wave and a
correction term to account for the distortion due to the anti-
nucleus charge. As in Appendix A, the correction term is
considered to be proportional ®e?. The wave function is
then given by

Y=ueP '+, (B1)

In Sec. Il we show that only the Fourier transform\bf
will enter the calculation. This Fourier transform can be de-
duced directly from the Dirac equation for the electron in the
presence of a Coulomb field of an antinucleus:

o == ze |
(y s+|y-V—m)\If’=Ty uePr, (B2)

Applying on both sides of this equation the operatef
+iy-V+m) we get

eip~r

(A+pA) W' =Z%(yPe +iy-V+m)(y°u) (B3)

r

Multiplying by e™'9" and integrating oved®r we get

(PP~ )W =Ze[2y% +iy-(a—p)](Y°u) .
(a—p)
(B4)
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where we have used the identityy% +ivy-V —m)(y°u)
=0. Thus,

_29%+iy-(q—
W= (W)= — dmz il VAP
(a=p)*(q°=p%)
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iQ-r F
Tﬁ=477f dgrh[l)fi(r)_jfi(r)'V]:47TzeQ2(_Qa))2 '
(C4

whereQ=k;—k; andF(Q) is given by Eq.(2.6). The cross

In Sec. Il we use this equation to calculate the matrix ele-

ment for the production of antiatom.

APPENDIX C: PLANE-WAVE BORN APPROXIMATION

In the plane wave Born approximation the transition ma-

trix element is given by

Tfi:f dsr[Pfi(r)¢(f)—jfi(r)-A(r)] (Cl)
where
()] |1 , el o
[A(r)}_IVHdr oy Kalr ik, (€2

and(k|ry=e'*" is a plane wave for the antiproton. Using

eiw|rfr’| 1 iK-(r—r")
— 3

e

K2— w?

= (C3
r=r'|  2x?

and Js;=Vp;;, we get

section is given by
do
m:( f | Tsil2.

For relativistic antiproton energies

Fi's

2
277) spins

QL:ki_kf Cosezki—kf:wlv, QTeq:kf S|n(6)

=Ev sin(0)=dQ=d?q,/(Ev)?, (C5)
so that
_[Z+e\? , |F(QI?
o=4|—= S%J d qt—(QZ—wZ)Z' (C6)

Theq, integration ranges from 0 to a maximum valge,
whereE andv are the antiproton energy and velocity, re-
spectively. This value is, however, much larger than the rel-
evant energies entering the matrix element§ (®Q). Thus,
the expression above is the same as the one derived in Sec.

I, Eq. (2.7).
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